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INNOVATIVE MODELS AND APPLICATIONS
OF SATELLITE INTELLIGENCE
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M. Lavreniuk!, L. Shumilo 3, S. Skakun 3

! Space Research Institute of the NAS of Ukraine and the State Space Agency of Ukraine
2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
3 University of Maryland, College Park, USA

Introduction

The ongoing military conflict in Ukraine has had de-
vastating impacts on the country’s environmental moni-
toring [1], as well as agricultural lands, posing a severe
threat to global food security [2]. Accurate and timely
monitoring of crop production losses and field damages is
crucial for guiding recovery policies, quantifying economic
impacts, and ensuring food availability worldwide [3—21].
This study aims to leverage the power of satellite imagery
and advanced machine learning techniques to address
two critical tasks related to the war’s effects on Ukrainian
agriculture [22—30].

The first task focuses on developing an innovative data
augmentation approach to enhance crop classification
models’ performance. Crop classification maps are vital for
various agricultural applications, including yield estimation,
risk assessment, and sustainable land management.
However, the real-world distribution of crop types and land
cover classes is often imbalanced, hindering the scalability
and transferability of traditional machine learning models.
To overcome this challenge, the study proposes a novel
data augmentation method that employs Generative
Adversarial Neural Networks (GANs) with pixel-to-pixel
transformation [31—35]. This approach generates realistic
synthetic satellite images and corresponding segmentation
masks, capturing underrepresented crop type distributions
and enabling better representation of minority classes
during model training.

The second task addresses the quantification of war-
induced crop losses in Ukraine and their impact on global
food security [22—30]. By analyzing a multi-year panel
of village councils across Ukraine, the study estimates
the reduction in winter crop area and yield caused by
the conflict. This analysis provides crucial insights into
the direct and indirect effects of military activities on
agricultural production, highlighting the need for targeted
support and recovery efforts.

Furthermore, the study presents a robust methodo-
logy for near real-time monitoring and assessment of
agricultural land damage caused by military actions [23—
24]. Leveraging freely available Sentinel-2 satellite data, the
proposed approach combines machine learning techniques
with spectral band and vegetation index anomaly detection

to accurately identify and delineate damaged fields. This
automated monitoring system can aid in documenting
war crimes, informing recovery analyses, and supporting
targeted food security policies at local and global levels.

By addressing these critical tasks, this study aims to
contribute to the advancement of satellite intelligence
for agricultural monitoring, damage assessment, and the
development of effective strategies to mitigate the severe
consequences of armed conflicts on global food security.
Since Ukraine is an associate member before joining Euro-
pe, currently active implementation of the Land Parcel
Identification System practice has been initiated in Ukraine
with the support of the World Bank.

The Training Data Imbalance Problem
in Crop Classification

An efficient GAN architecture enables the generation
of realistic synthetic satellite images for training data
augmentation [31—36]. The relationship between satellite
images and segmentation masks hinges on textural and
multispectral features within the images. We trained a
model capable of producing realistic satellite images for
any artificially generated segmentation mask. This method
allows for the creation of synthetic pairs of satellite images
and masks, capturing unobservable crop type distributions
and providing control over class balance in the dataset.
We used 256 x 256 pixel sparse segmentation masks to
generate 4-bands synthetic satellite images. The resulting
augmentation algorithm shown on Fig. 1. First, we trained
pix-2-pix GAN model to generate realistic satellite image
based on the segmentation map. Then, we modified real
segmentation maps to generate artificial masks with better
representation of minority classes. After this, we combined
original satellite data and generated into the joint training
data collection that was used to train segmentation model
with higher accuracy of minority classes separation [32, 33].

As aresult, we created 2,384 synthetic satellite images with
artificial masks using both GAN and statistical methods.
We then trained four models: (I) using real satellite data;
(IT) combining real satellite data with synthetic images from
the statistical method; (III) with synthetic images from the
sampling method; (IV) with synthetic images from the
GAN method. We applied standard augmentations like
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Fig. 1. Proposed GAN augmentation approach scheme for crop type mapping with use of deep learning segmentation model
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Fig. 2. Comparison of ground truth labels (GT Label) with classification results obtained using only real Sentinel-2 image (Model I),
with generated by the statistical method data (Model II), with generated by the sampling method data (Model III), and with
generated by the GAN method data (Model IV)
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Fig. 3. Routes for in-situ training data
collection, 2019—2022. Green and orange
refer to the paths of ground data collection
for winter and summer crops, respectively

rotations and flips and used the focal loss function to address
class imbalance, incorporating established techniques.
Subsequently, we evaluated the performance of these four
methods on an independent testing dataset consisting of
2,125 real images. The model (I) achieved 77.3% Overall
accuracy (OA) and 64.1% of Intersection over Union (IoU),
however the average accuracies of cropland (AAC) for User
Accuracy (UA), Producer Accuracy (PA) and IoU are very
low, due to the high imbalance of real representation of crop
classes. The model (IV), trained with use of proposed GAN
augmentation methodology, overperformed model (I),
model (IT) and model (III). In comparison with model (II),
average UA raised by 2.7%, PA by 1.1% and IoU by1.2%. In
the same the OA accuracy and overall IoU increased by
1.4% and 1.6% relatively.

The Fig. 2 shows the visualization of obtained classifica-
tion maps based on the models (I)—(IV). It is possible to
mention that majoritarian classes like maize, wheat and
sunflower have high quality on both maps. However, the mi-
nority class rapeseed (dark red) obtained by model (I) have
defects and artefacts and much smaller quality in compa-
rison with model (IV). This result can be explained precisely
by the fact that GAN, unlike classical statistical methods of
generation, allows retrieval of artificial examples that will
preserve the similarity of not only the pointwise statistical
characteristics of the classes, but also their textures.

The proposed new approach for the data augmentation in
the task of crop classification is based on the GAN pix2pix
model for realistic, in terms of multi-spectral and textural
characteristics, image generation that provides the possibility
to eliminate the problem of data set disbalance for deep
learning semantic segmentation methods. The proposed
method was compared with classical image generation
approaches based on the statistical characteristics of
multispectral features of crop type classes and has been tested
upon basic augmentations and loss function applicable in
a case of class imbalance. As a result, the proposed method

2019 2020
> ]
2021 2022
. 7
2 3
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outperformed models trained based on the real only data
and classical approaches for most of cropland classes with
significant improvement of accuracies for all minority classes.

Quantifying war-induced crop losses
in Ukraine in near real time to strengthen local
and global food security

While many studies investigate effects of conflict
on food security, they focus on the demand rather than
the supply side. To assess how the war is likely to affect
Ukraine’s production and thus global food security, we
use Sentinel-2 imagery to construct outcome variables
and indicators for the location and extent of conflict
activity at different points in time. Although data used for
winter crops, results point towards a reduction of up to
4.84 million tons of wheat only a small portion of which is
attributable to direct field damages associated with the war
and a reltively large effect on small farmers. This evidence
already prompted several donors to establish cash transfers
or investment grants targeted specifically at small farmers.

To provide training data for generation of crop cover
estimates using machine learning techniques, in-situ data
collection along main roads following JECAM guidelines
was undertaken yearly from 2019 to 2021. In each year,
two extended field trips, one for the winter and one for
summer crops, were conducted (Fig. 3 presented the route
maps in each year) [37—45].

Cloud-free satellite imagery from the period during
which ground data were collected was then used to hand-
label contiguous blocks of clearly identifiable crop cover
that were used to train the machine learning model. While
conflict conditions prevented in situ data collection during
the spring, a ground survey for the 2022 crop was eventually
organized in June 2022. Crop maps for 2019—21 build
on analysis performed in [40, 41] who used optical data
from Sentinel-2 and SAR data from Sentinel-1 during the
vegetation period using a convolutional neural network
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on the Amazon Web Services cloud computing platform
as well as a random forests classifier on the Google Earth
Engine (GEE) platform [46—49]. A winter crop mask
for 2022 was created by computing the maximum NDVI
for all of Ukraine in any two-week interval between
February 1 to May 31 on GEE and applying threshold
segmentation. Maps of the estimated winter cereal area by
VC generated on this basis as displayed in Fig. 4 illustrate a
concentration of winter cereals in the country’s South and
East and suggest a much lower level of winter cereal cover
in 2022 and to some extent in 2020 than in 2021 and 2019.

We use a 4-year panel (2019—2022) of 10,125 village
councils in Ukraine to estimate effects of the war started
by Russia on area and expected yield of winter crops
aggregated up from the field level. Satellite imagery is used
to provide information on direct damage to agricultural
fields; classify crop cover using machine learning; and
compute the Normalized Difference Vegetation Index
(NDVTI) for winter cereal fields as a proxy for yield. Without
conflict, winter crop area would have been 9.35 rather than
8.38 million ha, a 0.97 million ha reduction, only 14%
of which can be attributed to direct conflict effects. The
estimated drop associated with the conflict in NDVI for
winter wheat, which is particularly pronounced for small
farms, translates into an additional reduction of output
by about 1.9 million tons for a total of 4.84 million tons.
Taking area and yield reduction together suggests a war-
induced loss of winter wheat output of up to 17% assuming
the 2022 winter wheat crop was fully harvested.

Assessing Damage to Agricultural Fields
from Military Actions in Ukraine

This study presents a robust methodology to automatically
identify agricultural areas damaged by wartime ground
activities using free Sentinel-2 satellite data [22]. The
10 meters resolution spectral bands and vegetation indices
are leveraged, alongside their statistical metrics over time,
as inputs to a Random Forest (RF) classifier. The algorithm

Area, ha
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Fig. 4. Map of
winter crop cover
for 2019 to 2022
growing seasons

efficiently pinpoints damaged fields, with accuracy metrics
around 0.85. Subsequent anomaly detection delineates
damages within the fields by combining spectral bands and
indices. Applying the methodology over 22 biweekly periods
in 2022, approximately 500 thousand ha of cropland across
10 regions of Ukraine were classified as damaged, with the
most significant impacts occurring from March to Septem-
ber. The algorithm provides updated damage information
despite cloud cover and vegetation shifts. The approach
demonstrates the efficacy of automated satellite monitoring
to assess agricultural impacts of military actions, supporting
recovery analysis and documentation of war crimes.

The algorithm identifies direct damages on the fields
as anomalies in Sentinel-2 images. The algorithm is struc-
tured into three primary steps, as illustrated in the level-0
dataflow diagram in Fig. 5:

1. Experts manually identify damaged fields to create
training and test datasets.

2. The machine learning model, specifically RF classifi-
cation, is employed to recognize damaged fields.

3. Damaged areas within these fields are further iden-
tified using threshold segmentation for anomaly detection.

According to satellite bands and vegetation indexes
analysis the B2 (Blue) and B3 (Green) spectral bands are
especially effective for pinpointing damage in fields with
sparse vegetation. On the other hand, vegetation indexes
NDVI and GCI are more efficient at detecting damage
in fields with dense vegetation. As a Machine Learning
model, we have chosen the RF classifier with binary output,
classifying fields as either damaged or undamaged. The
inputs for this model will be the statistical attributes of the
most pertinent spectral bands and vegetation indices. To
evaluate the accuracy of the model efficacy, we use widely
accepted metrics, including user’s accuracy (precision),
producer’s accuracy (recall), and the F1-score.

To ensure the validity of the experiment, considering
vegetation shifts, we construct distinct classification mo-
dels for each study period. We adopt the 5-fold cross-
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Fig. 7. Damage detection using the Green band B3 and the GCI index, NDVI = 0.63 < 0.65, May 9—23, Zaporizhzhia region

validation method (allocating 80% for training and 20%  aggregate these metrics across periods to determine the
for validation). During this process, we evaluate accuracy  overall classification accuracy.

metrics for each iteration and compute their mean, To detect anomalies with vegetation indices we imple-
providing accuracy estimates for each period. Finally, we = ment smoothing, applying a 5 x 5 mean filter to the raster
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Fig. 8. Damage detection using the Blue band B2 and the GCI index, NDVI = 0.43 < 0.65, June 20 — July 4, Zaporizhzhia region
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Fig. 9. Heat map of damaged agricultural fields and total areas of damage by region

maps of the vegetation indices. Then we compute the dif-
ference between the actual vegetation index values and
the smoothed values at each pixel. This differential ana-
lysis aids in spotting anomalies or deviations, signaling
potential field damage. Fig. 6 illustrates the results of the
proposed algorithm.

Similarly, the concurrent anomalies in the GCI index
and the Blue band B2 facilitate the identification of cra-
ters from bomb detonations on both highly and sparse
vegetated fields. To delineate these damages, we intersect
anomalous pixels from GCI and B2 (for NDVI < 0.65,
Fig. 7). Concurrent anomalies in the inverse GCI index

and the Green band B3 help to identify anomalies with
moderate to low vegetation (NDVI < 0.65, Fig. 8).

We run RF classification models for each region and for
every individual 2-weeks period separately (started from
24 February, 2022). Then we calculated the accuracy metrics
for these models and averaged the results by region and by
period. The period-wise results demonstrate relatively
consistent accuracy levels across the board.

The analysis by regions reveals that the most significant
damage occurred in the Donetsk region, where approximately
149 th. ha or 30% of the total damaged agricultural area were
affected by the war. Following that, the Kharkiv region
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experienced damage to approximately 98 th. ha (19.65%).
The Kherson and Zaporizhzhia regions recorded damages
on 90 th. ha (18.1%) and 68 th. ha (13.72%) respectively
(Fig. 9).

Overall, considering all regions over the entire evalua-
tion duration, the war has impacted a cumulative area of
499 th. ha of agricultural land.

This work presents a robust methodology to automatically
identify approximately 500,000 ha of cropland damaged by
wartime ground activities across 10 regions of Ukraine using
free Sentinel-2 satellite data. The 10 meters resolution spectral
bands and vegetation indices are leveraged, alongside their
statistical metrics over time, as inputs to a RF classifier.

The algorithm efficiently pinpoints damaged fields, with
producer and user accuracy metrics consistently around 0.85.
Subsequent anomaly detection combining spectral bands
and indices delineates localized damages within the fields.
The approach is applied over 22 biweekly periods in 2022,
revealing heightened impacts from March to September.

Conclusions

This study presents an innovative approach to near
real-time monitoring of agricultural land damage caused
by military activities in Ukraine, utilizing freely available
Sentinel-2 satellite data and advanced machine learning
techniques. The proposed methodology effectively addresses
several critical challenges, including the imbalanced
distribution of crop types and land cover classes in real-
world data, which hinders the scalability and transferability
of traditional classification models.

To overcome the data imbalance problem, a novel data
augmentation method employing Generative Adversarial
Neural Networks (GANs) with pixel-to-pixel transformation
(pix2pix) is introduced. This approach generates realistic
synthetic satellite images and corresponding segmentation

masks, capturing unobservable crop type distributions and
enabling better representation of minority classes during
model training. The GAN-based augmentation technique
outperformed classical statistical methods, significantly
improving the accuracy of crop classification, particularly
for minority classes.

Furthermore, the study quantifies the war-induced crop
losses in Ukraine, highlighting the severe impact on global
food security. By analyzing a 4-year panel (2019—2022)
of village councils across Ukraine, the study estimates
a reduction of up to 4.84 million tons of winter wheat
output, representing a staggering 17% decrease. This loss
is attributed not only to direct field damages but also to the
indirect effects of the conflict on small farmers, emphasizing
the need for targeted support and recovery policies.

The proposed damage detection algorithm, which
combines machine learning techniques with spectral band
and vegetation index anomaly detection, has proven highly
effective in identifying and delineating damaged agricultural
fields. With overall accuracy metrics consistently around
0.85, the algorithm has successfully identified approximately
500,000 hectares of cropland damaged across 10 regions of
Ukraine during the 2022 growing season.

The study’s findings underscore the critical importance
of near real-time monitoring and assessment of agricultural
land damage during armed conflicts. The developed metho-
dology can aid in documenting war crimes, quantifying
production losses, and informing targeted recovery efforts
and food security policies at both local and global levels.

In conclusion, this research contributes significantly to
the advancement of satellite intelligence for agricultural
monitoring and damage assessment, while also highligh-
ting the pressing need for international cooperation and
support to mitigate the severe consequences of the on-
going conflict on global food security.
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