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Abstract Rapid environmental, socio-economic, and geopolitical changes are accel-
erating transformations in land use patterns worldwide. To effectively monitor and 
predict these dynamics, DTs offer a promising approach by integrating real-time 
Earth observation data, climate models, AI-driven analytics, and socio-economic 
indicators. This paper identifies a critical gap in the application of Digital Twins 
(DT) frameworks for land use change monitoring, which remains underexplored. 
We propose a novel two-timescale DT architecture designed to track both rapid 
event-driven land cover changes (such as floods, wildfires, war-induced damage) 
and gradual long-term transformations, such as climate-induced agricultural shifts 
and urban expansion. By bridging the gap between advanced Earth observation tech-
nologies and decision-making processes, the proposed framework contributes to the 
development of AI-enhanced DT systems that facilitate climate adaptation, disaster 
response, and long-term sustainability in dynamic land systems. 
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1 Introduction: Relevance and Importance of Digital Twins 
for Land Use Change 

Rapid environmental and socio-economic changes necessitate advanced monitor-
ing and predictive modeling of land use dynamics. Climate change is intensifying 
extreme weather events and driving long-term transformations, such as shifting agri-
cultural zones, deforestation, and urban expansion. Simultaneously, war-induced 
disruptions—including destruction, displacement, and reconstruction—add further 
complexity to land use patterns. Effectively managing these challenges requires 
near-real-time, data-driven tools for informed decision-making. 

Digital Twins (DTs) provide a powerful tool for monitoring and predicting land use 
changes by integrating real-time satellite data, climate models, and socio-economic 
indicators. Unlike traditional GIS systems, which rely on static maps, DTs continu-
ously process and analyze evolving environmental conditions, enabling dynamic, 
scenario-based forecasting. In recent years, major organizations such as NASA 
and the European Union have launched large-scale Earth System Digital Twin ini-
tiatives, demonstrating the growing recognition of this technology’s potential for 
environmental monitoring and decision-making. 

NASA defines an Earth System Digital Twin (ESDT) as “an interactive, inte-
grated, multidomain, and multiscale digital replica of Earth’s state and temporal 
evolution” [ 1]. The goal of this DT is to provide a continuously updated and har-
monized representation of Earth’s systems, allowing for more accurate simulations, 
scenario analysis, and predictive modeling. It is expected to integrate Earth system 
models, observational data, historical records, and AI-driven analytics to improve 
understanding of natural processes and human-induced changes. 

Rothe [ 2] analyzes the Digital Twin Earth (DTE) initiative by the European Space 
Agency (ESA) and the EU, defining it as a computational model that integrates 
satellite Earth observation, AI, and simulations to create a high-resolution, interactive 
replica of Earth’s systems. Focusing on governance and political implications, the 
paper describes DTE as a “visual object”—a real-time simulation tool designed 
for analyzing environmental changes and supporting policy and decision-making. 
Reference [ 3] discuss the role of Digital Ecosystems in developing DTE, with a focus 
on the Destination Earth (DestinE) initiative. The paper highlights how Big Data, AI, 
and Earth observation (EO) technologies enable the creation of high-resolution digital 
replicas of Earth’s systems to support climate adaptation, disaster mitigation, and 
sustainable development. The authors emphasize the need for interoperable digital 
infrastructures to connect heterogeneous data sources. However, the study does not 
focus on user feedback mechanisms or the modelling of different scenarios, which 
are crucial for DT and adaptive decision-making. 

Adade and de Vries [ 4] explore the application of DTs for participatory land-
use planning, emphasizing their role in providing dynamic simulations that enhance 
stakeholder engagement in sustainable land-use strategies. Their study highlights 
how DTs can improve transparency and decision-making by integrating social,
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economic, and environmental considerations. However, the paper remains concep-
tual and generic, lacking details on the technical architecture or data sources required 
for implementing such DT systems. 

While DTs have been widely studied across various fields, their application to land 
use change remains largely unexamined. As of this writing, a Scopus search returns 
approximately 30,000 studies (29,767) on DTs, yet only five papers specifically focus 
on land use change. Most existing research is concentrated on climate modeling, 
smart cities, and industrial applications, leaving a significant gap in the development 
of DT frameworks for monitoring and predicting land use dynamics. In particular, 
[ 5] propose a Cognitive Soil Digital Twin, a small-scale DT that integrates sensor 
networks, remote sensing, and AI to monitor and analyze the physical and biological 
dynamics of soil, focusing on land use changes and ecosystem health at a localized 
level. This approach aids in assessing soil degradation, agricultural productivity, and 
climate adaptation strategies at local scale. 

Fissore, Vanina et al. [ 6] propose a DT prototype for Alpine glaciers, integrating 
Earth observation data and in situ measurements to model glacier dynamics and 
assess the impacts of climate change. 

This paper aims to address the critical gap in DT applications for land use change 
monitoring by proposing a two-timescale DT framework. While existing DT initia-
tives primarily focus on climate monitoring and weather prediction, they lack the 
ability to track both rapid and gradual land use transformations. Given the increasing 
impact of climate change, extreme weather, and war-induced disruptions, there is an 
urgent need for real-time and predictive land use modeling that integrates satellite 
data, AI-driven analytics, and socio-economic indicators. 

The objectives of this paper are threefold. First, we review the state-of-the-
art enabling technologies for DTs in land use change and environmental moni-
toring, identifying key gaps in existing frameworks. Second, we present a novel 
two-timescale DT approach that accounts for both short-term, event-driven land 
cover changes (e.g., floods, wildfires, war damage) and long-term, gradual trans-
formations (e.g., climate-induced agricultural shifts, urban expansion, post-war 
land recovery). Finally, we demonstrate the relevance of this approach within the 
“DT4LC—Developing Scalable Digital Twin Models for Land Cover Change Detec-
tion Using Machine Learning” project, a Ukrainian-Swiss Joint Research Programme 
(USJRP) supported by the Swiss National Science Foundation (SNSF), showcasing 
its potential for adaptive land management, policy planning, and sustainable recovery. 

By bridging the gap between advanced Earth observation technologies and 
decision-making, this paper contributes to the development of AI-enhanced DT mod-
els that can support climate adaptation, disaster response, and long-term sustainability 
in dynamic land systems.
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2 Case Studies: Existing Digital Twin Initiatives in Land 
and Environmental Monitoring 

2.1 Destination Earth (DestinE)—EU Funded 
High-Resolution Earth System Modeling for Climate 
Adaptation 

Destination Earth (DestinE) is a large-scale initiative launched by the European 
Union in 2022 with the goal of developing an advanced digital model of the 
Earth. This initiative is designed to enhance environmental monitoring, climate 
change adaptation, and disaster management by integrating high-performance com-
puting, artificial intelligence, and Earth observation data [ 7]. DestinE aligns with the 
European Green Deal and the Digital Strategy, aiming to provide critical insights 
for decision-making processes related to climate policy, urban planning, and risk 
mitigation [ 8]. 

The initiative consists of three main components. The DT Engine serves as the 
computational infrastructure that integrates various Earth system models, allowing 
for high-resolution simulations and real-time data analysis [ 8].  The  Data  Lake  is  a  
centralized repository that aggregates and harmonizes data from satellite observa-
tions, in-situ measurements, and model outputs, enabling large-scale data process-
ing [9]. The Core Service Platform acts as the interface that provides access to the 
DTs, offering tools and services for users, including policymakers, scientists, and 
industry stakeholders [ 10]. 

DestinE is implemented through collaboration between three key organizations. 
The European Space Agency (ESA) is responsible for the Core Service Platform, 
ensuring accessibility to DestinE’s outputs [ 10]. Meanwhile, the European Organi-
sation for the Exploitation of Meteorological Satellites (EUMETSAT) manages the 
Data Lake and oversees data infrastructure [ 9]. The European Centre for Medium-
Range Weather Forecasts (ECMWF) leads the development of the DT Engine and the 
first two DTs: the Weather-Induced Extremes Digital Twin and the Climate Change 
Adaptation Digital Twin [ 8] (Fig. 1). 

The two DTs serve distinct but complementary purposes, operating on different 
time scales. The Weather-Induced Extremes Digital Twin is designed to support 
short-term forecasting and response to meteorological, hydrological, and air quality 
extremes. It provides near real-time simulations to improve risk assessments and 
emergency response strategies, with a focus on short-term time scales ranging from 
hours to days [ 8]. In contrast, the Climate Change Adaptation Digital Twin models the 
long-term impacts of climate change, projecting environmental and socio-economic 
consequences over multiple decades. This DT enables policymakers to explore future 
climate scenarios and develop sustainable adaptation strategies [ 10]. 

The data foundation of DestinE relies on multiple sources, including satellite 
pop-observations from ESA’s Earth Explorer missions and the Copernicus Sentinel 
program, in-situ measurements from ground, air, and ocean monitoring networks, and 
scientific modeling studies from ECMWF and other EU-funded research projects [ 7].
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Fig. 1 Access to DestinE data and other cloud-based processing data services that will be available 
in the Data Lake [ 9] 

DestinE enhances the use of DTs for Earth system monitoring by integrating com-
putational models with real-time observational data, particularly through the Open 
Data Cube infrastructure for data harmonization. This approach enables detailed anal-
ysis of both short-term weather-related hazards and long-term climate trends. DestinE 
is expected to be fully developed by 2030, providing a foundation for evidence-based 
policy decisions and enhancing resilience to climate-related risks across Europe and 
beyond. 

2.2 NASA Earth System Digital Twin 

Since 2022, NASA has been running the Advanced Information Systems Technology 
(AIST) program with the goal of developing an ESDT. This initiative aims to create a 
dynamic, interactive model that replicates the state and evolution of Earth’s systems. 
The ESDT is envisioned as an advanced computational framework that integrates 
real-time data, artificial intelligence, and predictive models to improve Earth system 
monitoring and decision-making [ 1] (Fig. 2). 

According to [ 1], the ESDT should incorporate various Earth system models to 
simulate atmospheric, oceanic, land, and cryospheric processes. It should also inte-
grate observational data from multiple sources, including satellite imagery, ground-
based sensors, aerial and underwater instruments, and socioeconomic datasets. Addi-
tionally, historical records will be used to validate models and provide context for 
current and future predictions. The use of advanced AI and data analytics will enhance
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Fig. 2 Earth System Digital Twins (ESDT): New AIST-21 Thrust. Continuous Integration of New 
Observing Strategies (NOS) and Analytic Collaborative Frameworks (ACF) Techs [ 1] 

the system’s ability to identify patterns, improve forecasting, and support decision-
making in areas such as climate change adaptation, disaster response, and resource 
management. 

The AIST program plays a critical role in developing information system frame-
works for the ESDT, ensuring that these DT components operate cohesively. The 
program’s objective is to create a computational environment that mirrors real-world 
Earth system dynamics, enabling “what-if” scenario analysis and predictive sim-
ulations. This approach is expected to enhance the ability to assess risks, model 
environmental changes, and develop proactive mitigation strategies. Although the 
AIST program has been operational since 2022, there are currently no published 
results of the project in Scopus, indicating that research and implementation are still 
in progress. At present, the only available documentation on the initiative is a con-
ceptual paper, which outlines the framework and objectives of the ESDT without 
presenting empirical findings [ 1]. 

2.3 Biodiversity Digital Twin 

Lecarpentier, Damien et al. [ 11] explore the development of prototype DTs for 
biodiversity conservation Biodiversity Digital Twin (BioDT), combining satellite 
data, ecological models, and artificial intelligence to improve ecosystem monitoring 
and biodiversity predictions. The BioDT project is funded by the European Union 
Horizon Europe Programme. The study highlights several key achievements in the 
field.
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First, the authors describe advancements in biodiversity modeling, where they 
integrate statistical species distribution models with ecological process-based sim-
ulations. This approach allows for more accurate predictions of species habitat 
changes and provides insights into how biodiversity might respond to environ-
mental shifts, such as climate change or habitat destruction. Second, they focus 
on improved data fusion methodologies, combining satellite imagery, climate data, 
and field observations. The goal is to create a comprehensive and detailed represen-
tation of ecosystems, ensuring that different data sources are harmonized and can 
be used together effectively. However, the study does not clarify whether real-time 
data assimilation—the continuous updating of models with new incoming data— 
has been fully implemented, which remains a challenge in DT development. Third, 
the research explores scalable computational frameworks, using high-performance 
computing and cloud-based infrastructures to handle large biodiversity datasets. 

While these technologies allow for efficient data storage and processing, it is 
unclear to what extent real-time data processing and analysis have been fully imple-
mented. The authors emphasize the importance of making DTs dynamic and respon-
sive to new information, but achieving real-time functionality remains an ongoing 
challenge. Additionally, the study acknowledges several challenges, including data 
standardization across different sources, the computational demands of large-scale 
simulations, and the need for interdisciplinary collaboration. 

2.4 A New Digital Twin for Climate Change Adaptation, 
Water Management, and Disaster Risk Reduction 

The development and potential of Denmark’s national Hydrological Information and 
Prediction (HIP) system is presented by [ 12], with a focus on the DK-model HIP and 
its associated web portal, as a “digital twin” (DT) to improve climate change adap-
tation, water management, and disaster risk reduction (Fig. 3). The authors present 
a case study of how real-time dynamic updates of the DK-model HIP simulations, 
coupled with plug-in submodels, can form a national, real-time risk knowledge base 
for extreme hydrological events. 

The research is framed within the context of EU climate change adaptation strate-
gies and the IPCC AR6 report, emphasizing the role of digital transformation and 
DTs in enhancing risk assessment based on historical, current, and projected climate 
impacts. The authors also acknowledge the value of nature-based solutions. 

The foundation of this DT is the DK-model HIP system, a detailed hydrological 
model for all of Denmark. Turning this system into a DT involves several key steps. 
First, the system continuously pulls in real-time data from a network of sensors across 
the country. These sensors track groundwater levels, soil moisture, and streamflow. 
This constant flow of data keeps the DT up-to-date with current conditions. To ensure 
the model is accurate, it is carefully calibrated using groundwater measurements
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Fig. 3 HIP DT architecture [ 12] 

from a national program. This allows for ongoing checks of the model’s perfor-
mance against real-world data, both now and in the future, under different climate 
scenarios. The system also uses hybrid machine learning (ML) techniques, combin-
ing traditional models with data-driven ML models like Random Forest, Gradient 
Boosting, and LSTM networks. These ML tools help to refine data, fill in missing 
information, and speed up simulations. 

A key feature is the development of “plug-in digital twins” for local river basins. 
These smaller, more detailed models can connect with the national HIP DT. By 
receiving real-time information from the national model, these local twins can pro-
vide more precise assessments of water-related risks. Information from these local 
models can also potentially improve the national-level simulations. All model results, 
from both the 500 and 100 m resolution models (totaling 5 TB of data), are freely 
available through the HIP portal. This supports informed decisions about climate 
change adaptation, water management, and disaster risk reduction. The HIP portal, 
created by the Danish Agency for Data Supply and Infrastructure (SDFI), is the main 
interface for the DT. It offers access to model data, simulations, and risk assessments 
for water managers, emergency responders, and the public. The system works by 
the DK-model HIP delivering real-time model simulations, updated daily. The goal 
is to provide a 5–10 day forecast nationwide by 2025, enhancing its use for disaster 
preparedness. The HIP model can simulate past conditions (1990–2019) and project 
future climate change impacts for the near (2041–2070) and distant future (2071– 
2100) under different emission scenarios. As a physical model, it also offers insights 
into various water processes.
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2.5 Digital Twins as an Implementation of the Digital Earth 
Concept 

2.5.1 The “Digital Earth” Concept 

The concept of “Digital Earth” was introduced by U.S. Vice President Al Gore in 
1998, emphasizing the importance of developing a system that would “integrate all 
that is known about the planet” [ 13]. The overarching goal is to create a compre-
hensive, fully integrated three-dimensional representation of Earth, enabling users 
to “navigate through space and time, accessing historical data as well as future pre-
dictions (based, for example, on environmental models), and facilitating its use by 
scientists, policymakers, and the general public” [ 13]. 

The realization of this vision was proposed through research focused on ten key 
areas, including but not limited to: (1) information integration; (2) spatio-temporal 
analysis and modeling; (3) efficient data tiling and management schemes for Earth’s 
curved surface; (4) intelligent data descriptions and filtering; (5) visualization of 
abstract spatial concepts; (6) computational infrastructure; (7) trust and quality mod-
els for information and services; (8) governance and collaborative frameworks; (9) 
data sharing and open-access policies; and (10) social and economic impacts of Dig-
ital Earth [ 14]. The vision of Digital Earth is supported by the International Society 
for Digital Earth (ISDE), which has advanced the concept through the integration of 
evolving digital technologies. Since its inception in 1998, the vision has undergone 
multiple revisions, with the latest occurring in 2022. The most recent assessment con-
cludes that while many of the initially envisioned technologies are now available, 
the full potential of Digital Earth remains underutilized [ 15]. 

2.5.2 Relation to Digital Twins 

Significant advancement proposed at the ISDE 2020 conference [ 16, 17], was the 
integration of the DT concept within DE vision. A DT serves as a dynamic link 
between the physical and virtual representations of the Earth, integrating “thermo-
dynamic properties of our planet with associated environmental, economic, and social 
phenomena” [ 15]. 

In 2021, the definition of a DT was refined as “a digital replica of an Earth system 
component, structure, process, or phenomenon, obtained by merging digital model-
ing (particularly learning-based models) and real-world observational data streams. 
A DT continuously learns and updates itself, functioning as a living digital simulation 
that evolves alongside its physical counterpart” [ 3]. In conclusion, the integration of 
DT technology within the Digital Earth framework holds significant promise for 
enhancing our understanding and management of complex global systems. As the 
Digital Earth concept continues to evolve, embracing DT technology could bridge 
the gap between physical and virtual realities, thereby maximizing the utility and
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impact of digital earth applications. This integration represents a forward-thinking 
step toward achieving more sustainable and resilient management of the Earth’s 
resources and environments. 

2.5.3 Local Open Data Cubes as a Realization of the Digital Earth 
Concept 

In the research [ 18], authors analyzed the use of local Open Data Cubes (ODCs) 
within the Digital Earth framework, emphasizing that “freely accessible Earth Obser-
vation (EO) data cube software has become one of the most widely used EO data 
management tools.” The authors advocate for a “think global, cube local” approach, 
promoting interconnected local EO data cubes to enhance geographic specificity, 
community engagement, and decision-making efficiency. 

Open-source EO data cubes provide a scalable and flexible analytical platform for 
managing large EO datasets. They support applications ranging from local research 
projects to global-scale analysis and enable a diverse set of users, from small research 
teams to large organizations [ 19]. The adoption of FAIR (Findable, Accessible, Inter-
operable, Reusable) data principles is critical for ensuring interoperability in EO data 
cube development [ 20]. 

Moreover, the integration of ODCs contributes to the realization of the Sustain-
able Development Goals (SDGs). EO data has been instrumental in addressing SDG 
targets related to clean water and sanitation (Goal 6), sustainable cities (Goal 11), 
marine and terrestrial ecosystems (Goals 14 and 15), and other domains by provid-
ing critical geospatial insights [ 21]. While EO data does not directly deliver SDG 
indicators, it provides essential spatio-temporal data that can be aligned with SDG 
targets. For instance, changes in land cover serve as indicators of land degradation 
or improvement under SDG target 15.3 [ 18, 22]. 

2.5.4 Living Earth for Land Cover Change Classification Based on EO 
Data 

In terms of evidence-based decision-making is vital to use standardized descrip-
tions of land cover change processes. References [ 23, 24] addresses the necessity of 
reliable and scalable land cover mapping to support Sustainable Development Goal 
(SDG) reporting. Research highlights EO data has become an essential resource for 
tracking and reporting SDG indicators, with the capacity to support approximately 
40 targets and 30 indicators across various SDGs. However, despite advancements in 
analytical capabilities, such as ODC and machine learning, many nations lack access 
to standardized, operational land cover products tailored to their specific report-
ing needs. Existing land cover datasets are often inconsistent between countries 
and produced at spatial scales unsuitable for SDG reporting, limiting their practical 
applicability.
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To address these challenges, a global framework was introduced based on the Food 
and Agriculture Organisation’s Land Cover Classification System (FAO LCCS). The 
FAO LCCS provides a comprehensive taxonomy for land cover classification, offer-
ing a hierarchical and modular approach well suited for EO data. The authors intro-
duce Living Earth, an open-source software package optimized for EO data, which 
enables standardized and globally applicable land cover classification. The system 
builds on previous efforts such as the Earth Observation Data for Ecosystem Monitor-
ing (EODESM) system and ensures interoperability with existing national EO infras-
tructures. By maintaining the fundamental principles of the LCCS-2 framework, 
including its dichotomous and modular-hierarchical phases, Living Earth allows for 
the classification of landscapes even when complete input data is unavailable. The 
paper emphasizes that the implementation of Living Earth enhances the ability of 
nations to track and report land cover changes in a consistent and comparable manner. 
By identifying key environmental descriptors and prioritizing data collection efforts, 
the framework provides a practical approach to generating the most relevant input 
data for SDG target setting. The integration of Living Earth with high-performance 
computing resources enables the efficient processing of dense satellite time-series 
data, further improving land cover monitoring capabilities. Additionally, case studies 
like Digital Earth Australia (DEA) [ 25] and Swiss Data Cube (SDC) [ 26] demon-
strate the benefits of a pixel-based approach to land cover analysis, enabling direct 
temporal comparisons at high spatial resolutions. 

2.6 Lessons Learned from Existing DT Models 

This section explores the ESDTs currently being developed to support environmental 
monitoring, climate adaptation, and disaster management. These systems integrate 
multi-source satellite data, AI-driven analytics, and predictive modeling to generate 
real-time simulations of Earth’s processes. Notable initiatives, such as DestinE and 
NASA’s ESDT, mark significant progress in environmental modeling and predictive 
analytics. One of the key strengths of existing DTs is their ability to assimilate 
real-time data, incorporating continuous updates from remote sensing and in-situ 
measurements, ensuring that simulations remain up to date. Additionally, AI-driven 
predictive analytics improve forecasting accuracy, enabling better anticipation of 
extreme weather events and more effective mitigation of climate change impacts. 

However, despite these advantages, current Earth System DTs are not yet equipped 
to monitor land use changes effectively. Their primary focus is on climate and envi-
ronmental variables, with limited support for detailed land use classification and 
change detection. Most DTs do not account for human-driven land use transitions, 
such as urbanization, agricultural expansion, or post-war land restoration. Another 
major challenge is the harmonization of diverse data sources—integrating multi-
source satellite imagery, socioeconomic datasets, and in-situ observations requires 
standardized data pipelines. For instance, [ 27] emphasize the complexity of har-
monizing models from various stakeholders, showing that successful integration
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requires technical interoperability and an understanding of the nuanced perspectives 
and interpretive frameworks of diverse data producers. This challenge is especially 
acute in areas like Land Use Change, where data, despite being from the same sector, 
must be synthesized into coherent, actionable representations. 

High-resolution, near-real-time land use change monitoring also demands vast 
amounts of satellite data, presenting computational and storage challenges that hin-
der large-scale applications. Additionally, many existing DTs lack user feedback 
mechanisms, making it difficult to simulate different scenarios. These issues align 
with [ 28], who emphasize that DTs of Earth require sophisticated digital infrastruc-
tures to manage vast amounts of data and highlight that current implementations often 
lack mechanisms for users to effectively interrogate systems and explore response 
scenarios, which limits their practical application in decision-making processes. Such 
a gap prevents decision-makers from effectively adapting DT outputs for land use 
planning and incorporating them into governance policy-making. 

To overcome these limitations, existing DT frameworks should be enhanced by 
integrating advanced land use classification models, multi-source data fusion, scal-
able computing infrastructure, and user-driven interfaces. The following section 
explores the data sources and models available to support the development of 
LUC-DT. 

3 Conceptual Framework: A Digital Twin for Land Use 
Change’s Estimation 

3.1 Need for a Two-Timescale Approach 

Land use change occurs at different temporal scales, requiring a structured approach 
to effectively capture both short-term disturbances and long-term transformations. 
Existing DT initiatives, such as DestinE, primarily focus on either high-frequency 
extreme events or long-term climate trends. However, when applied to land use 
monitoring, these approaches are often not fully integrated, despite the fact that both 
rapid disruptions and gradual transitions shape landscape dynamics. To address this 
gap, we propose a two-timescale framework that accounts for both immediate land 
cover disturbances and long-term transformations. 

Sudden land use changes occur due to extreme weather events, natural disasters, 
and human-induced disturbances. These changes can significantly alter landscapes 
within days or even hours, requiring near real-time monitoring. DT models, such 
as the Weather-Induced Extremes Digital Twin within DestinE, focus on short-term 
climate hazards but do not fully integrate land cover changes resulting from these 
events. Floods, droughts, and storms can alter vegetation health and soil properties, 
while wildfires rapidly deforest large areas and disrupt ecosystems. Conflict-induced 
destruction, such as war-related infrastructure damage, can lead to sudden changes 
in urban and agricultural land cover, while environmental accidents, including dam
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failures and industrial spills, cause abrupt land degradation. To account for such rapid 
changes, a short-term monitoring component is needed, similar to how the Weather-
Induced Extremes DT operates for meteorological events. This component would 
integrate high-frequency satellite observations, real-time remote sensing indices, 
and physics-informed AI models to detect and analyze land use changes, providing 
timely insights for response and mitigation. 

In contrast, many land use changes unfold gradually over years or decades, influ-
enced by climatic trends, demographic shifts, and socio-economic factors. The Cli-
mate Change Adaptation Digital Twin within DestinE focuses on long-term climate 
projections, but it does not specifically model land use transitions such as urbaniza-
tion, agricultural shifts, or reforestation. For instance, rising temperatures and chang-
ing precipitation patterns are progressively shifting agricultural zones, affecting crop 
suitability and farming practices. Glacier melting and permafrost degradation influ-
ence hydrological systems and landscapes, while deforestation and afforestation 
reshape ecosystems and carbon storage over extended periods. Urban expansion and 
land abandonment, particularly in post-war or economically shifting regions, lead to 
gradual but significant transformations in land use patterns. These changes require 
a long-term modeling component, similar to how the Climate Change Adaptation 
DT models future climate scenarios. By integrating multi-year satellite data, climate 
models, socio-economic datasets, and machine learning-based land use forecasting, 
this component would provide a comprehensive analysis of land use trends and their 
future implications. 

Therefore, monitoring of land use change requires a two-scale approach to capture 
both immediate disruptions and long-term trends. Short-term monitoring enables 
rapid response to extreme events, while long-term modeling provides insights for 
policy and sustainability planning. Integrating both perspectives, the proposed DT 
framework enhances existing initiatives like DestinE by incorporating land use-
specific modeling across timescales, ensuring both reactive responses and proactive 
strategies for effective land management. 

3.2 Structure of the Proposed Digital Twin Model 

Within Ukrainian-Swiss Joint Research “DT4LC—Developing Scalable Digital 
Twin Models for Land Cover Change Detection Using Machine Learning” there 
have been proposed the development of an advanced DT model for monitoring the 
land cover of Ukraine and Switzerland based on satellite data (Fig. 4). This model 
should enable effective tracking of both rapid changes related to vegetation indices 
and gradual transformations in land use classes. Thus, our proposed model includes 
two branches: 

1. A rapid change branch for near real-time monitoring and forecasting of vege-
tation index changes under the influence of climate, including extreme weather 
conditions, or other factors;
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Fig. 4 Architecture of the proposed DT for monitoring land cover changes in Ukraine and 
Switzerland 

2. A gradual change branch (slow LULC transformations) focused on analyzing 
land use class changes twice a year. 

One of the key features of our DT is the ability for users to input their own scenarios of 
future climate changes through the user interface. This interactive capability ensures 
that the DT is not only a real-time monitoring tool but also a predictive system for 
landscape development under climate impact. 

The proposed DT follows a two-tier vertical architecture. At the lower level, 
DT Instances (DTI) represent individual models linked to specific physical objects, 
continuously collecting data about these objects throughout their lifecycle [ 29]. In 
the rapid LULC changes branch, these objects are vegetation indices, and the DTI 
includes a VI Prediction Model and a Physics-Informed Model. In the slow LULC 
changes branch, the objects are LULC classes, and the DTI consists of a founda-
tional segmentation model (encoder) and a decoder. Additionally, both branches are 
integrated by a DTI specifically designed for tracking land cover changes. 

The DT Aggregator (DTA), in turn, integrates all DTIs, climate data, ground obser-
vations, and user assumptions, creating a unified system for land cover monitoring 
and forecasting. 

Rapid change monitoring, particularly vegetation index variations, is performed 
using the VI Prediction Model. This model incorporates data on land use, satellite 
imagery, climate indicators, and user-generated climate change assumptions. The 
VI Prediction Model can be implemented as a spatial recurrent neural network or 
a transformer model; however, we do not impose strict architectural constraints at 
this stage. Our goal is to develop a system that, based on historical data, current
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conditions, and future climate and land use projections, can predict vegetation devel-
opment for different land cover classes. This will enable users to track the potential 
development of vegetation after extreme events, such as severe weather conditions or 
anthropogenic impacts like flooding caused by dam failures. Additionally, they will 
receive recommendations on optimal future land use strategies, including selecting 
the most suitable areas for crop cultivation to maximize yields. 

To enhance the accuracy of vegetation change forecasting, PINNs are employed 
for weather predictions [ 30]. These models incorporate physical principles and 
real-world constraints to improve the accuracy of climate and weather simula-
tions, which in turn enhances vegetation forecasting. By integrating regional phys-
ical characteristics and enforcing physical constraints, PINNs contribute to more 
reliable assessments of vegetation index conditions for specific land use classes. 
Thanks to this approach, the DT can provide real-time insights into vegetation health 
while also improving the precision of long-term environmental predictions. Our DT 
is designed for simultaneous monitoring of multiple vegetation indices, including 
NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference 
Water Index), GCI (Green Chlorophyll Index), and others. This allows for a compre-
hensive assessment of vegetation health, drought forecasting, and other ecological 
risks. 

Due to the significant computational costs of constructing LULC segmentation 
maps and the relatively low frequency of LULC change, the generation of such maps 
has been assigned to a separate branch—the gradual change branch. This process 
is intended to be performed twice a year, aligning with the country’s agricultural 
cycles. Specifically, the first map aims to detect the presence of winter crops, while 
the second focuses on summer crops. 

At the core of this branch is a two-component LULC segmentation model. The 
first component is an encoder derived from existing foundation models, which uti-
lizes satellite imagery and climate data to generate embedded representations. The 
second component is a decoder that processes these embeddings to achieve precise 
image segmentation and land use classification. While the encoder remains fixed, the 
decoder is trained to accurately determine the correct land use class. The outputs of 
this branch serve as the foundation for the rapid change branch and, when integrated 
with data from other models, contribute to a comprehensive understanding of land 
cover transformations. 

The final component of our DT is the LULC change model, which integrates 
predictions of vegetation index and land use class changes to generate land cover 
change maps. These data are accessible for analysis through a specialized Web Map 
Service (WMS) accessible in user interface, allowing interaction with the system and 
input of future climate change assumptions.
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4 Discussion: Challenges, Open Questions, and Future 
Research Directions 

The development of a DT for land use change presents several challenges and oppor-
tunities. While integrating a two-timescale approach enhances the ability to mon-
itor both rapid and gradual transformations, its implementation requires address-
ing key computational challenges, ensuring interoperability across diverse datasets, 
and effectively bridging the gap between technological advancements and decision-
making processes. At the same time, the potential applications of such a framework 
extend beyond environmental monitoring, offering valuable insights for adaptive 
land management, climate resilience, and policy development. 

One of the primary challenges in implementing a DT for land use change is the 
computational demand required for real-time processing of high-resolution satellite 
data and predictive modeling of long-term transformations. The short-term moni-
toring component relies on frequent updates from satellite imagery, climate obser-
vations, and machine learning models, requiring scalable cloud-based infrastruc-
ture and efficient data processing pipelines. The long-term modeling component, 
which integrates historical data with predictive simulations, demands robust com-
putational frameworks capable of handling multi-source data fusion and scenario 
analysis. Optimizing the balance between computational efficiency and accuracy 
remains a key consideration in ensuring the system remains both responsive and 
scalable for large-scale applications. 

Another critical issue is interoperability, as DT frameworks must integrate data 
from multiple sources, including satellite imagery, climate projections, in situ obser-
vations, and socio-economic datasets. Existing DTs, such as those developed under 
DestinE, face challenges in harmonizing heterogeneous data streams, particularly 
when combining optical and radar-based remote sensing with model-driven climate 
predictions. Standardized data formats, open-access platforms, and advances in AI-
driven data fusion techniques are essential for ensuring seamless integration of multi-
source datasets. Additionally, improved interoperability would enable better collab-
oration across different institutional and regional initiatives, fostering a more unified 
approach to land use change monitoring. 

The potential applications of a DT framework for land use change are exten-
sive. In climate resilience, it can support adaptation strategies by predicting shifts 
in agricultural zones, monitoring deforestation, and assessing the long-term impacts 
of climate change on land use patterns. In disaster response, real-time monitoring 
of extreme events such as floods, wildfires, and hurricanes can provide early warn-
ings and guide mitigation efforts. Post-war reconstruction planning can also benefit 
from DT models, helping to assess damage, prioritize rebuilding efforts, and ensure 
sustainable land restoration. Furthermore, by integrating socioeconomic data, the 
framework can support urban planning, resource allocation, and land use policy 
development, ensuring that decisions are informed by comprehensive, data-driven 
insights. By addressing computational efficiency, ensuring data interoperability, and 
improving accessibility for decision-makers, a two-timescale DT for land use change
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can become a powerful tool for monitoring and managing dynamic land systems. Its 
ability to integrate high-frequency observations with long-term modeling provides a 
holistic approach that not only enhances scientific understanding, but also supports 
practical applications in climate resilience, disaster response, and sustainable land 
management. 

5 Conclusion 

Given analysis of major DT initiatives for Earth System, including DestinE, NASA’s 
ESDT, and specialized implementations like the BioDT, reveals that while these 
systems excel at climate modeling and environmental monitoring, they face signifi-
cant limitations in land use change applications. Most existing DTs focus primarily 
on atmospheric and climate variables, with limited support for detailed land use 
classification and change detection. They often don’t give the ability to account for 
human-driven land use transitions such as urbanization, agricultural expansion, or 
post-war land restoration. Current models struggle with the harmonization of diverse 
data sources—integrating multi-source satellite imagery, socioeconomic datasets, 
and in-situ observations. Land use change monitoring demands substantial compu-
tational resources, creating scalability challenges for large-scale applications. Many 
existing DTs don’t support effective user feedback mechanisms, limiting their utility 
for scenario-based planning and decision support in land management. 

To address these challenges, within the Ukrainian-Swiss Joint Research 
“DT4LC—Developing Scalable Digital Twin Models for Land Cover Change 
Detection Using Machine Learning,” we have developed a novel two-timescale DT 
architecture designed specifically for land use change monitoring. This framework 
consists of a rapid change branch and a gradual change branch, integrated through a 
Digital Twin Aggregator (DTA) system that enables comprehensive analysis across 
different temporal scales. The rapid change monitoring component focuses on near 
real-time monitoring of vegetation indices and fast land cover changes caused by 
extreme weather events, natural disasters, and human activities. It incorporates a VI 
Prediction Model for tracking multiple vegetation indices, Physics-Informed Neural 
Networks for enhanced weather forecasting, and real-time satellite imagery process-
ing to detect sudden landscape alterations. This branch enables timely identification 
of floods, wildfires, drought impacts, and conflict-related landscape destruction, 
providing critical information for emergency response and short-term adaptation 
strategies. Complementing this, the gradual change component monitors long-term 
land use transformations that unfold over years or decades, influenced by cli-
mate trends, demographic shifts, and socio-economic factors. Through a foundation 
model-based land use segmentation approach, it generates comprehensive land cover 
maps on a bi-annual basis, tracking agricultural transitions, urban expansion, defor-
estation, and other gradual landscape changes. This component provides essential 
insights for long-term planning, climate adaptation, and sustainable development 
policies.
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